

Twelfth International Aluminum Extrusion Technology Seminar & Expo May 3 – 5, 2022 Orlando, Florida USA

Additive Manufacturing of H-13 Inserts for Optimal Extrusion Die Cooling

Lorenzo Donati¹, Barbara Reggiani², Riccardo Pelaccia², Giuseppe Valli¹, Ivan Todaro¹, Rosario Squatrito¹, Luca Tomesani¹, Tommaso Pinter³, Enea Mainetti⁴, and Yoram Rami⁵

¹ University of Bologna, Bologna, Italy,
² University of Modena and Reggio Emilia, Reggio Emilia, Italy
³ Almax-Mori S.r.I., Via Matteotti 13, Mori, Italy
⁴ A.t.i.e. Uno Informatica S.r.I., Lecco, Italy
⁵ S.h.I. ALUBIN, Kiryat Bialik, Haifa, Israel

Hot Aluminum Extrusion

Liquid

nitrogen

die cooling

Isothermal

extrusion

Regulation of

extrusion

profile

temperature

Productivity

The Extrusion Process with Nitrogen Cooling

Benefits of Liquid Nitrogen Cooling:

-Exit profile temperature decrease; -Die Temperature decrease; -Extrusion Load increase negligible; -Increase of extrusion speed; -Reduction of profile oxidation.

Improvement of actual system:

-Cooling channels nearer the bearings -Geometrical constraint with milling and drilling -Channel design very often based on

die makers experience

The Conformal Cooling Channel

CONFORMAL COOLING CHANNELS (CCC): Channels that follow the shape of the die opening.

TO ADDITIVE MANUFACTURING

UNIMORE

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO FMILIA

LUBIN

The Aim of the Work: The multi-die concept design for nitrogen cooling

Conventionally machined

H-13 steel housing: -Support the insert -transfers the nitrogen to the inserts -interference coupling

MULTI-DIE CONCEPT

INIMORE

IVERSITĂ DEGLI STUDI DI VDENA E REGGIO EMILIA

Selective laser melting (SLM) additive process.

H-13 AM insert:

-good tolerances and not high costs -machined for required finishing -Easily exchangeable

Insert design tools

JNIMORE

NIVERSITÀ DEGLI STUDI D

IBI

ALMA MATER STUDIORUM

6

Design of SLM insert with conformal cooling channel

NIVERSITÀ DEGLI STUDI DI ODENA E REGGIO EMPLI

Helix diameter affects the distance of the channel from bearings (safe distance required)

Helicoidally channel to follow the profile along the extrusion direction

Helix pitch small= channel length increase (higher cooling power)

Helix pitch small= percentage of void increase (possible yielding during printing process, mechanical resistance decrease)

Bearings

Thermocouple hole to monitor the insert temperature

Channel diameter big to facilitate the nitrogen flowing, but not excessive to avoid weakening

FEM analysis of SLM insert with conformal cooling channel

Simulation parameter COMSOL code:

- Eulerian Approach (already deformed billet) ő
- Un-coupled Thermal-Structural analysis •
- Extruded material AA 6063 aluminum alloy
- T_{billet} 450°C 0
- T_{die/insert} 450°C •
- T_{ram} 300°C. •
- Extrusion speed 5 mm/s. •

IVERSITÀ DEGLI STUDI DI VDENA E REGGIO EMILIA

OPTIMIZED DESIGN

Insert Manufacturing

- SLM: Sisma MySynt 100
- Working chamber dimension: Ø100 x H160 mm
- Maximum laser power: 150 W
- Laser spot: 50 µm
- 1.2344 (H13) Powder provided by LPW SOUTH EUROPE SRL

INIMORE

IVERSITÀ DEGLI STUDI DI VOENA E REGGIO EMILUI

	С	Cr	Mn	Мо	Ni	Si	V	Fe
wt %	0,32 - 0,45	4,75 - 5,50	0,2 - 0,5	1,10 - 1,75	$\leq 0,3$	0,8 - 1,2	0,8 - 1,2	Balance

Fluency [J/mm³]	Power [W]	Laser velocity [mm/s]	Hatch distance [mm]	Layer thickness [µm]	
143	100	700	0,05	20	
Ontimized laser parameters for H13 99% density obtained					

20 22 50 YEARS

Insert Manufacturing

X-Rays analysis

Microstructure analysis

Insert mounts in the steel housing

Quality inspection:

- No cracks
- Density>99%
- Unobstructed channels
- Fine grain structure -

- Bearings and outer surface machined with EDM process
- Heat treatments: Annealing, quenching and tempering (Hardness: 45 HRC ± 3)

IBI

Die Testing- Experimental Trials

Process parameters:

- 2.5 MN testing press
- Final profile: 10 mm diameter round bar
- 24 AA6063 billets
- 18 ZM21 billets
- Billet length: 100 mm
- Billet Ø: 45 mm
- Container Ø: 50 mm
- Billet/die pre-heat: 450°C (AA6063) /300°C (ZM21)
- Container T: 375°C
- Extrusion speeds:
 - AA6063: 4.2 mm/s and 6.5 mm/s
 - ZM21: 4 mm/s
- Liquid N₂ stored at 5 bar in a tank of 230 I

AA6063 Trials

Main Results:

- Insert resisted the whole campaign
- Extrusion load increased only by 10% with cooling (from 100 to 110 tons);
- In the steady state cooling condition the insert temperature decreased up to 90 °C;
- The increasing of ram speed produced a lower exit temperature with respect to uncooled conditions at lower extrusion speed;
- Nitrogen flow has to be turned off during billet change in order to avoid excessive die cooling;
- Not easy to understand if liquid or gas nitrogen is flowing into the channel.

ZM21 Trials

JNIMORE

INIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

Main Results:

- Insert resisted the whole campaign
- Extrusion load increased only by 20% with cooling (from 100 to 120 tons)
- Also with non conformal cooling the insert temperature decreased of 40 °C
- Insert re-design is necessary to avoid transferring gaseous nitrogen holes obstruction.

Numerical Model with Nitrogen Cooling

Flow stress of AA 6063 and ZM21 with the Sellars–Tegart inverse sine hyperbolic model

IBI

ALMA MATER STUDIORUM

AA	6063	ZM21		
Parameters	Value	Parameters		
α	0.0456 1/MPa	α	0.02	
А	6.063E12 s ⁻¹	А	1.3	
Q	2.044E5 J/mol	Q	1.41	
R	8.314 J/(°K mol)	R	8,314	
n	5.18	n		

INIMORE

VERSITĂ DEGLI STUDI D

Value

0.0238 1/MPa

1.35E12 s⁻¹ 1.414E5 J/mol

8,314 J/(°K mol) 3.6

Modelling Setting:

- Comsol Multiphysics® software
- 3D model of the extrusion process is coupled with 1D model of cooling channel
- Pure Eulerian approach (billet shape as aluminum already extruded)
- Steady-state study of the extrusion process (low computational time)
- Ram and Container replaced with equivalent thermal and load boundary conditions

Parameters	Value
HTC _{steel-steel}	3000 W/(m ² K)
HTC _{alum-steel}	11000 W/m ² K)
Bearings friction	Slip condition
Container friction	No Slip condition

Numerical Model

UNIMORE

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Experimental vs Numerical Results

AA 6063

UNIMORE

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

ATICA

LUBIN

	Temperature (°C)	Load (MN)
Experimental no cooling	387	0.98
Numerical no cooling	392	1.09
% Err	1.3%	11%
Experimental gas cooling	353	0.99
Numerical gas cooling	342	1.13
% Err	-3%	14%
Experimental liquid cooling	275	1.21
Numerical liquid cooling	285	1.19
% Err	3.6%	-1.65%

Good matching of numerical results

Experimental vs Numerical Results

ZM21

UNIMORE

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

UBIN

ALMA MATER STUDIORUM

Conclusions

- The multi-die concept was validated and the insert was successfully SLM printed
- Insert resisted the whole experimental campaign
- The conformal cooling channel solution allowed a maximum temperature decreasing up to 90 °C nearby the bearings, with a slightly increase of extrusion load (10-20%)
- Experimentally, the channel design allowed to remove heat where required and to double the production rate
- The developed coupled FE model with nitrogen in conformal channels was found able to properly predict the cooling effect (maximum error of 11% in terms of load, 3.6% in terms of temperature)

THANK YOU FOR YOUR ATTENTION... ...questions?

Lorenzo Donati¹, Giuseppe Valli¹, Ivan Todaro¹, Rosario Squatrito¹, Luca Tomesani¹ Barbara Reggiani², Riccardo Pelaccia², Tommaso Pinter³, Enea Mainetti⁴, Yoram Rami⁵

¹ University of Bologna, Bologna, Italy,
² University of Modena and Reggio Emilia, Reggio Emilia, Italy
³ Almax-Mori S.r.I., Via Matteotti 13, Mori, Italy
⁴ A.t.i.e. Uno Informatica S.r.I., Lecco, Italy
⁵ S.h.I. ALUBIN, Kiryat Bialik, Haifa, Israel

